

STEP TO PG- MD/MS/DNB

A common understanding is that deficiency should be treated with Supplementation.

e.g : hypokalemia is treated with Potassium supplementation

Hyponatremia = sodium deficit

So salt supplementation is required in all

Hyponatremia usually means water overload but not sodium deficit

Hyponatremia can occur with normal, high or low body sodium.

Hyponatremia

Usually means

Water retention

2Na (mEq/L) + 2K (mEq/L) + gluco	ose (mg/dL) + BUN (mg/dL)
	18	2.8
that is,		
2(Na + K) + BUN	+ glucose	
2.8	18	

So if sodium decreases, serum osmolality should also decrease

STEP TO PG- MD/MS/DNB

True hyponatremia Assess volume status

STEP TO PG- MD/MS/DNB

<u>Hyponatremia with</u> <u>ECF volume depletion</u>

Patient dehydrated

Reduction in total body sodium exceeds reduction in Total body water

<u>Hyponatremia with</u> <u>ECF volume depletion</u>

<u>Renal losses</u>

- 1) Excess diuretics
- 2) Cerebral salt wasting Sx
- 3) Salt losing nephropathy
- 4) Diabetic ketoacidosis

Urine Na > 20

<u>Extra- Renal</u> losses

-Vomitings

-Diarrhoea

-Peritonitis

Urine Na <20

STEP TO PG- MD/MS/DNB

Hyponatremia with Increase ECF volume

-Patient edematous

-Increase in total body water is more than total body sodium

STEP TO PG- MD/MS/DNB

Hyponatremia with Increase ECF volume

Urine Na > 20

Renal failure

Urine Na <20

Heart failure

Cirrhosis

Nephrotic Sx

STEP TO PG- MD/MS/DNB

Hyponatremia with Normal ECF volume

Urine Na > 20

SIADH

Psychogenic Polydipsia

Hypothyroisism

Cortisol deficiency

Stress

Post operative Pain

STEP TO PG- MD/MS/DNB

CLINICAL FEATURES

Plasma concentration (mEq/L)	Signs/symptoms	
130-135	Asymptomatic	
125-130	Nausea and malaise	
115-120	Headache, lethargy, disorientation	
Severe and rapidly developing	Seizure, coma, permanent brain damage, respiratory arrest, brainstem herniation, and death	

Why Hyponatremia mainly causes Neurogenic Symptoms ??

Approach to hyponatremia

STEP TO PG- MD/MS/DNB

TREATMENT OF HYPONATREMIA

STEP TO PG- MD/MS/DNB

Hyponatremia which develops quickly should be treated fast.

Hyponatremia which develops slowly should be treated slowly.

- Thiazide diuretics causes maximum hyponatremia among Diuretics.

STEP TO PG- MD/MS/DNB

SPECIFIC TREATMENT

- 1) Removal of Drugs causing Hyponatremia
- 2) Management of physical stress and postoperative pain
- 3) Treatment of
- hypothyroidism CHF Adrenal insufficiency nephrotic Sx Uncontrolled diabetes

STEP TO PG- MD/MS/DNB

To treat or Not Treat ??

- -Rapid correction of hyponatremia can lead to **Central Pontine Myelinosis**
- -Severe hyponatremia < 115meq/l can lead to severe irreversible neurological damage
- -So decision has to be taken carefully whether to treat or not based on symptoms.

Rapid Treatment indicated in :

Acute <48hrs symptomatic
Severe hyponatremia <115meq/l

Rapid Treatment should be stopped once:

- 1) Patient is Asymptomatic
- 2) Serum Na reaches 120-125meq/l

STEP TO PG- MD/MS/DNB

-It is a severe neurological disorder characterised by

Dysphasia

dysarthria

coma

flaccid paresis

- DR.AKIF A.B

MRI is the investigation of Choice

Rate of Na correction Recommended is

0.5meq/l per hour

or

10-12meq/l per day

Fluid preferred for Treatment is

0.9% NS – Fluid of choice

3%NS – used in cases where Rapid correction is recommended

- 1) harrison's 19th edition
- 2) Fluid therapy by Dr. Sanjay Pandya

STEP TO PG- MD/MS/DNB

Case 1

- A 60-year-old man is admitted to hospital with severe septic shock from pneumonia.
- He receives vasopressor therapy for hypotension.
- During the first 10 days of his stay he receives many litres of intravenous fluids, mainly normal saline (0.9%), and has received 10 L in excess of urine volume excretion.
- On day 5, he develops acute kidney injury with oliguria and his serum sodium concentration is 132 mmol/L.
- By day 20, his blood pressure and sepsis have improved, as has his renal function.
- His urine output has progressively increased, urine sodium level is 37 mmol/L, urine potassium level is 42 mmol/L, and urine osmolality is 410 mmol/kg.
- His serum sodium concentration rises over the next 4 days to 154 mmol/L.
- At this time, he is no longer receiving intravenous fluids and weighs 8 kg more than when he presented to hospital.

<u>Case 2</u>

- An 85-year-old female nursing home resident
- History of dementia presents to hospital with fever

• On admission

- blood pressure is 85/55 mmHg
- \circ serum sodium concentration is 174 mmol/L
- urine osmolality is 645 mmol/kg,
- $\circ\,$ serum urea is 122 mg/dL and serum creatinine is 1.1 mg/dL